A novel neural network with simple learning algorithm for islanding phenomenon detection of photovoltaic systems

نویسندگان

  • Kuei-Hsiang Chao
  • Chia-Lung Chiu
  • Ching-Ju Li
  • Yu-Choung Chang
چکیده

This study aimed to propose an intelligent islanding phenomenon detection method for a photovoltaic power generation system. First, a PSIM software package was employed to establish a simulation environment of a grid-connected photovoltaic (PV) power generation system. A 516W PV array system formed by Kyocera KC40T photovoltaic modules was used to complete the simulation of the islanding phenomenon detection method. The proposed islanding phenomenon detection technology was based on an extension neural network (ENN), which combined the extension distance of extension theory, as well as the learning, recalling, generalization and parallel computing characteristics of a neural network (NN). The proposed extension neural network was used to distinguish whether the trouble signals at the grid power end were power quality interference or actual islanding operations, in order that the islanding phenomenon detection system could cut off the load correctly and promptly when a real islanding operation occurs. Finally, the feasibility of the proposed intelligent islanding detection technology was verified through simulation results. 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial Basis Neural Network Based Islanding Detection in Distributed Generation

This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

ارائه روشی نوین برای بهره برداری و تشخیص حالت جزیره ای تولیدات پراکنده مبتنی بر اینورتر

This article is introducing a new controlling scheme for islanding operating of inverter-based distributed generations. That in this method load protection at the time of connection to the network and islanding operation is completely intended. Moreover, the islanding detection algorithm which is based on ROCOF relaying, for detecting islanding phenomenon is provided. The algorithm is also equi...

متن کامل

Numerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011